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Abstract The modelling of steady-state natural and mixed convection in obstructed channels is
presented. The two-dimensional numerical analysis is carried out with a finite element thermally
coupled incompressible flow formulation written in terms of the primitive variables of the problem
and solved via a generalized streamline operator technique. Natural convection is studied in several
vertical channel configurations for a wide range of Rayleigh numbers while mixed convection is
analysed in a horizontal channel with a built-in rectangular cylinder for different Reynolds and
Grashof numbers. The results obtained in this work are validated with available experiments and
other existing numerical solutions.
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Nomenclature
a ¼ vertical channel width
b ¼ body force vector, g½1 2/ðT 2 TrefÞ�
c ¼ specific heat
Cd ¼ drag coefficient
Cl ¼ lift coefficient
Cx ¼ friction coefficient, 2 ›U=›y
g ¼ gravity value
g ¼ gravity vector
Gr ¼ Grashof number, Ra/Pr
h ¼ thickness of the obstruction
H ¼ horizontal channel height
k ¼ conductivity coefficient
L ¼ vertical channel height
L1 ¼ height of the obstruction on the left

wall from the vertical channel entrance
L2 ¼ height of the obstruction on the right

wall from the vertical channel entrance
n ¼ outward unit normal vector to G
Nu ¼ average Nusselt number,

1=L
R

L Nuy dy
Nux ¼ local Nusselt number for the horizontal

channel, ðTw2T inÞ=ðTw2TbÞ ›T=›y

Nuy ¼ local Nusselt number for the vertical
channel, a7T ·n

p ¼ pressure
Pr ¼ Prandtl number, mc/k
r ¼ radius of the obstruction
Ra ¼ Rayleigh number,

gaðTw 2 T inÞa
3cr 2=km

Re ¼ Reynolds number, U avHr=m
T ¼ temperature
Tb ¼ bulk temperature, 1=H

R
H Tdy for 0 ,

x , 2H ; 2:25H , x , 6H
1/(0.375H)

R
0.375HTdy for 2H # x #

2:25H and 0 # y # 0:375H ; 0:75H #
y # H

U ¼ horizontal component of the velocity
Uav ¼ average velocity at the inflow
v ¼ velocity vector
V ¼ vertical component of the velocity
w ¼ width of the obstruction
x ¼ horizontal spatial coordinate
y ¼ vertical spatial coordinate
Y ¼ time interval of interest
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1. Introduction
The study of natural convection becomes relevant in many engineering
problems where the flow and heat transfer conditions are strongly affected by
buoyancy forces. Moreover, a wide range of practical applications also involve
the analysis of mixed convection flows. In particular, the understanding of such
phenomena is important in the design of electronic equipment, heat
exchangers, reactors and energy storage systems. Due to this, several
experimental and numerical studies have been carried out by different
researchers in order to evaluate the thermal behaviour and the flow pattern of
convection induced flows in geometrical configurations which commonly
appear in engineering designs: heat conducting planar channels (Aung and
Worku, 1986; Burch et al., 1985; Maughan and Incropera, 1987), natural
convection in thermosyphons (Islam et al., 1998; Mohamad and Sezai, 1997),
flow and heat transfer analysis in backward-facing steps (Baek et al., 1993;
Cruchaga, 1998; Hong et al., 1993; Iwai et al., 2000a, b; Tsui and Wang, 1995),
assessment of the effects of obstructions on the thermo-fluid behaviour in ducts
(Bejan et al., 1995; Elenbass, 1942; Naylor and Tarasuk, 1993a, b; Said and
Krane, 1990; Viswatmula and Amin, 1995) and non-isothermal flow past heated
bodies in horizontal channels (Cesini et al., 1999; Chang et al., 1988; Kaminski
et al., 1995; Karniadakis, 1988; Leung et al., 2000; Ramaswamy and Jue, 1992;
Sadeghipour and Hannani, 1992; Shuja et al., 2000; Wang and Liu, 1992). The
modelling of such applications has been approached by using numerical
solution algorithms defined in the frameworks of finite difference (Aung and
Worku, 1986; Burch et al., 1985; Chang et al., 1988; Iwai et al., 2000a, b), finite
volume (Baek et al., 1993; Hong et al., 1993; Leung et al., 2000; Mohamad and
Sezai, 1997; Shuja et al., 2000; Tsui and Wang, 1995; Wang and Liu, 1992), finite
element (Bejan et al., 1995; Cesini et al., 1999; Cruchaga, 1998; Kaminski et al.,
1995; Naylor and Tarasuk, 1993a; Ramaswamy and Jue, 1992; Sadeghipour
and Hannani, 1992; Said and Krane, 1990; Viswatmula and Amin, 1995)

RV ¼ flow residual vector
FV ¼ force vector
M ¼ mass matrix
KV ¼ advection-diffusion matrix
V ¼ flow nodal unknowns vector (velocity

and pressure)
RT ¼ thermal residual vector
FT ¼ external heat flux vector
C ¼ capacity matrix
K ¼ conductivity matrix
Kad ¼ thermal advection

matrix
T ¼ nodal temperature

vector
a ¼ volumetric thermal dilatation

coefficient

1 ¼ rate of deformation tensor,
1/2 ð7 £ v þ v £ 7Þ

r ¼ density
m ¼ dynamic viscosity
7 ¼ spatial gradient operator
G ¼ smooth boundary
V ¼ arbitrary open bounded

domain

Subscripts

in ¼ inlet
ref ¼ reference value
w ¼ channel wall

Superscripts

˙ ¼ time derivative
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and spectral (Karniadakis, 1988) methods. In addition, some of these numerical
predictions have been validated with experiments (Baek et al., 1993; Elenbass,
1942; Islam et al., 1998; Kaminski et al., 1995; Maughan and Incropera, 1987;
Naylor and Tarasuk, 1993b; Said and Krane, 1990; Wang and Liu, 1992).

This work presents a numerical analysis of natural and mixed convection in
obstructed channels applying an alternative finite element thermally coupled
incompressible flow formulation based on a generalized streamline operator
technique and written in terms of the primitive variables of the problem: velocity,
pressure and temperature (Celentano et al., 2001; Cruchaga and Celentano, 2000).
The main features of this formulation are related to the convective and pressure
numerical stabilization contributions and the least squares form of the
incompressibility constraint both intrinsically encompassed by this
methodology which provides, among others, the possibility to adopt equal
order interpolation functions for the primitive variables and precludes the use of
penalty procedures. This numerical approach is particularly well suited for
modelling problems at moderate-to-high Rayleigh numbers (Ra) and Reynolds
numbers (Re). The governing equations and the corresponding weak form used
to obtain this discretized formulation are briefly described in Section 2.

The objective of this work is the experimental and numerical validation of
the above-mentioned formulation in the analysis of the flow and thermal
responses of air in two-dimensional obstructed channels. An additional goal is
the extension of the study to higher Ra and Re with respect to those previously
reported in the literature. To this end, natural convection is studied in vertical
ducts for several Ra ranging from 102 to 106 in channels with circular and
multiple rectangular wall blocks obstructions. In particular, different locations
of the obstructions and channel aspect ratios (Ar) are evaluated for the latter
case. Moreover, smooth channel solutions are also obtained for comparison
purposes. The second problem consists of the analysis of mixed convection in a
horizontal channel with a built-in rectangular cylinder for different Re (100 and
500) and Grashof numbers (Gr; from 0 to 320,000). The buoyancy forces are
assumed to be governed by the Boussinesq approximation since no significant
air density changes are expected for the temperature ranges involved in both
applications. The steady-state results obtained in this work include
temperature, streamline and pressure spatial contours, local Nusselt number
(Nu) and friction coefficient distributions along the channel walls, average Nu
and, finally, drag and lift coefficients. The numerical predictions for both
problems are discussed and validated with available experiments and other
existing numerical solutions in Section 3.

2. Governing equations and finite element formulation
The basic formulation for incompressible laminar flow problems considering a
Newtonian fluid can be described by the momentum, continuity and energy
equations written as (Malvern, 1969):
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r _v þ rðv·7Þv þ 7p 2 7·ð2m1Þ ¼ rb in V £ Y ð1Þ

7·v ¼ 0 in V £ Y ð2Þ

rcð _T þ v·7TÞ ¼ 7ðk7TÞ in V £ Y ð3Þ

together with adequate initial and boundary conditions. As usual, the
buoyancy effects are included in the specific body force vector written
according to the Boussinesq approximation. In these equations, isotropic heat
conduction is assumed, no specific heat source is considered and the energy
term derived from mechanical viscous effects is neglected.

The weak formulation of the differential equations system (1-3) is obtained
in the context of the finite element method (Huang and Usmani, 1994;
Zienkiewicz and Taylor, 1989) by using a generalized streamline operator
technique initially developed for isothermal flows (Cruchaga and Oñate, 1997,
1999) and subsequently extended to non-isothermal situations (Celentano et al.,
2001; Cruchaga and Celentano, 2000). Aimed at avoiding numerical oscillations
normally present in dominant convective problems, this incompressible
thermally coupled flow formulation accounts for stabilization contributions
similar to those provided by other approaches, i.e. stabilization of the
convective terms [the well-known streamline-upwind/Petrov-Galerkin (SUPG)
method (Brooks and Hughes, 1982)], pressure stabilization terms to tackle the
incompressibility constraint [the Galerkin least squares (GLS) approach
(Hughes and Mallet, 1986) and the pressure-stabilizing/Petrov-Galerkin (PSPG)
formulation (Tezduyar et al., 1992)] and the least squares form of the continuity
equation (Behr et al., 1993). This methodology enables the use of equal order
spatial interpolation functions for the primitive variables of the problem
(velocity, pressure and temperature), may handle with meshes composed of
regular and/or distorted elements and, moreover, does not require penalization
techniques as well as tuning parameters defined outside the model. The derived
residual vectors for the spatially discretized equations can be written in a
compact manner as (Celentano et al., 2001; Cruchaga and Celentano, 2000):

RV ; FV 2 M _V 2 KV V ¼ 0

RT ; FT 2 C _T 2 ðK þ KadÞT ¼ 0
ð4Þ

that, respectively, represent the flow equations RV (motion and continuity) and
the energy equation RT both including the corresponding boundary conditions.
In the flow residual, the following contributions can be identified: the
Boussinesq approximation in the force vector FV, the diffusive and convective
terms together with the incompressibility condition in the advection-diffusion

HFF
13,1

60



matrix KV and the inertial effects in the mass matrix M. On the other hand, the
energy terms can clearly be seen in the thermal residual composed of the
external heat flux vector FT, the capacity matrix C, the conductivity matrix K
and the thermal advection matrix K ad. Details of the element expressions for
these matrices and vectors can be found in Cruchaga and Celentano (2000). In
addition, the temporal discretization of the flow nodal unknowns and nodal
temperature vectors V and T is performed using a Euler backward scheme
(Huang and Usmani, 1994; Zienkiewicz and Taylor, 1989). Furthermore, the
coupled system of equation (4) is solved via a staggered technique avoiding in
this way some practical difficulties of the full monolithic solution, e.g. large
computer memory requirements. Thus, each equation is separately solved
through an incremental-iterative scheme applying a Newton-Raphson type
algorithm. In order to preserve the coupling degree of the system, the coupled
solution is iteratively achieved in the same time step by means of locally
converged flow and thermal solutions obtained in a consecutive manner such
that the global convergence is attained when local convergences are
simultaneously fulfilled for both residuals. In this context, during the local
iterative solution procedure, the flow equation is solved at a fixed temperature
distribution while a known velocity field is considered for the energy equation
computation.

Steady-state solutions obtained using this methodology are presented in the
numerical examples of the next section. These numerical predictions have been
mainly computed through the steady-state version of system (4) (i.e. neglecting
the contributions of M and C ). However, for problems with large Ra (or Gr) and
Re, stationary solutions have been achieved via a transient analysis described
by system (4) since better convergence rates have been found for these
particular cases.

3. Numerical examples
3.1 Natural convection in vertical channels
Different geometries of vertical channels previously studied by other authors
(Elenbass, 1942; Said and Krane, 1990; Viswatmula and Amin, 1995) are also
analysed in the present work with the aim of checking the performance of the
methodology briefly described in Section 2. In particular, the analysis is
focused on the validation of the obtained results with experimental and
numerical data, the comparison between the flow pattern and heat transfer
conditions at different obstruction configurations and the extension to
situations with higher Ra. To this end, two-dimensional air natural convection
flow computations at a Prandtl number (Pr) of 0.71 with the gravity acting in
the vertical downward direction are performed in the channels shown in
Figure 1: a smooth duct (case A), a channel with a circular obstruction at the
middle of its height (case B) and channels with two rectangular wall blocks
(case C). Case A is studied at different Ar ðAr ¼ a=LÞ not only to perform an
experimental validation of the numerical results but also to evaluate the effects
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of the obstructions on the thermo-fluid response when comparing this reference
solution with those corresponding to cases B and C. Moreover, the proposed
methodology is assessed in case B with available experimental and numerical
results (Said and Krane, 1990). On the other hand, the effects of multiple
obstructions located at two heights of the channel walls are studied in case C
for different Ar (0.2 and 0.3) and Ra (102, 103, 104, 105 and 106). Numerical
results for the first three Ra values have been reported in Viswatmula and
Amin (1995) and, therefore, they are used to verify the current numerical
predictions in these configurations. Additional geometrical parameters, Ar and
Ra considered in the analysis for cases A, B and C are summarized in Table I.
The associated physical vertical channel heights for different Ar and Ra
considering thermophysical air properties at 208C (i.e. r ¼ 1 kg=m3; m ¼
1:8 £ 1025 kg=ms; c ¼ 1; 000 J=kg8C; k ¼ 0:025 W=m8C; a ¼ 3:66 £ 1023 and
g ¼ 9:8 m=s2) and Tw 2 T in ¼ 18C are shown in Table II.

Figure 1.
Natural convection in
vertical channels.
Geometries and
boundary conditions

Ar ¼ a/L r/L L1/L L2/L w/L h/L Ra

Case A
(smooth channel) 0.2727 – – – – –

2£102, 103

and 2£104

0.2
102, 103, 104,
105 and 106

0.3
Case B 0.2727 0.091 0.5 – – – 2£104

Case C Geometry I 0.2 – 0.25 0.75 0.0667 0.01334
102, 103, 104,
105 and 106

Geometry II 0.2 0.5 0.5
Geometry III 0.3 0.25 0.75
Geometry IV 0.3 0.5 0.5

Table I.
Natural convection
in vertical channels.
Characteristic
lengths for different
geometries and Ra
analysed
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The boundary conditions considered in the computations are also shown in
Figure 1. Non-slip boundary conditions are assumed for the velocity on the
channel walls (indicated with dark solid lines in the schematic layout of
Figure 1). The horizontal velocity component is fixed at zero in the inflow
(bottom) section where, in addition, the pressure is also fixed at zero in order to
consider a unique atmospheric relative pressure. A dimensionless unit
temperature is fixed on the channel walls and a zero value is adopted at the
inflow section for such variable.

The finite element meshes used in the simulations are composed of nearly
7,400 four-noded standard isoparametric elements (about 40 elements in the
channel width) and 7,600 nodes. The elements are generally regular except for
the distorted elements considered around the circular obstruction of case B.

The results obtained in the present work for a smooth channel (case A) with
Ar ¼ 0:2727 are presented in Figure 2 where the average Nu is plotted against

Ra
Ar 102 2£102 103 104 2£104 105 106

0.2 53.9 – 116.1 250.2 – 539.1 1161.5
0.2727 – 49.8 85.2 – 231.2 – –
0.3 35.9 – 77.4 116.8 – 359.1 774.3

Notes: the other physical channel sizes (a, r, L1, L2, w and h) can be obtained from the
corresponding ratios indicated in Table I.

Table II.
Natural convection

in vertical channels.
Physical vertical

channel heights L
(in mm) for different

Ar and Ra
considering

thermophysical
air properties at

208C and
Tw 2 T in ¼ 18C

Figure 2.
Natural convection in

vertical channels.
Average Nu for different

Ra in a smooth channel
with an Ar of 0.2727
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the Ra. Experimental measurements (Elenbass, 1942; Said and Krane, 1990)
and existing numerical results (Said and Krane, 1990) are also included for
comparison. A very good agreement between the predictions of the present
analysis and the experiments can be observed. The obtained numerical values,
systematically below the experimental ones, present smaller dispersions than
those reported in Said and Krane (1990).

A study of smooth channels with Ar of 0.2 and 0.3 is performed in order to
check the numerical behaviour in the analysed range of Ra and, in addition, to
compute a reference solution for further comparison of the thermo-fluid
response with those obtained for obstructed channels. The local Nu along the
vertical walls is plotted in Figure 3. For a given Ar, the local Nu increases with
the Ra due to the development of larger gradients close to the walls. When the
Ar increases, slightly larger local Nu are obtained as a consequence of greater
variations in the temperature field. Both effects can be also appreciated in the
average Nu versus Ra curves depicted in Figure 4. The differences between the
average Nu curves for Ar ¼ 0:2 and 0.3 decrease at higher Ra remaining
almost constant for Ra $ 103 approximately. The isotherm contours for the
studied Ar and Ra are presented in Figure 5 (plotted 0.1 apart) confirming once
again the trends already discussed.

Numerical and experimental local Nu distributions along the obstructed and
unobstructed walls for the channel with a circular obstruction are shown in
Figure 6 for Ar ¼ 0:2727 and Ra ¼ 2 £ 104 (case B). Although a little overall
influence of the obstacle on the Nu distribution along the unobstructed wall is
observed since this curve does not present large variations in comparison with
that of the smooth channel (see Figure 3), a noticeable increment can be
appreciated in front of the obstruction. The local Nu distribution along the
obstructed wall shows lowest values at the two intersections between the
obstruction and the wall. As the velocity of the flow increases in the vicinity of
the obstacle, Nu also increases up to a local maximum value. As can be seen, the
numerical profiles satisfactorily match the experimental values. A slight
discrepancy in the numerical results can be observed close to the bottom corner
attributable to the singularity caused by the temperature boundary conditions
imposed on the wall and air at the inflow section. This fact is also reflected in the
high local Nu computed at such position for all the cases studied. Moreover, the
isotherms, streamlines and pressure contours obtained in the present analysis
are plotted in Figure 7. A thermal boundary layer is formed on each plate with
larger gradients at the upstream obstacle wall. This trend agrees with the
physical observations through interferograms reported in Said and Krane
(1990). Owing to the reduction of the channel cross section at the obstructed zone,
the density of streamlines increases, in accordance with the vertical velocity,
enhancing the heat transfer conditions in that region (see Figure 6). The vertical
velocity component and temperature distributions at different horizontal
sections of the channel can be found in Figure 8 where a comparison with
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Figure 3.
Natural convection in

vertical channels. Local
Nu distributions in a

smooth channel for
different Ar and Ra
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Figure 5.
Natural convection in
vertical channels.
Isotherms (plotted 0.1
apart) in a smooth
channel for different
Ar and Ra. Ar 0.2: (a1)
Ra¼102, (a2) Ra¼103,
(a3) Ra¼104, (a4)
Ra¼105, (a5) Ra¼106.
Ar 0.3: (b1) Ra¼102, (b2)
Ra¼103, (b3) Ra¼104,
(b4) Ra¼105, (b5) Ra¼106

Figure 4.
Natural convection in
vertical channels.
Average Nu in a smooth
channel with different Ar
and Ra
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the numerical results reported in Said and Krane (1990) are also included.
The vertical velocity profile appears to be parabolic at the inflow and outflow
sections while a sharp distribution is found at the mid-height of the channel.
These results show a qualitative and quantitative good agreement with those

Figure 6.
Natural convection in

vertical channels. Local
Nu distributions in a

channel with a circular
obstruction at the middle
of its height with an Ar

of 0.2727 for
Ra ¼ 2 £ 104

Figure 7.
Natural convection in

vertical channels.
Channel with a circular

obstruction at the middle
of its height with an Ar

of 0.2727 for
Ra ¼ 2 £ 104:

(a) isotherms (plotted 0.1
apart), (b) streamlines

(wA¼20.95, wB¼29.21,
plotted Dw ¼ 1.03 apart),
and (c) pressure contours
( pA¼0.083, pB¼20.470,

plotted Dp ¼ 0.069
apart)
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previously published. The discrepancies observed in the vertical velocity
distribution of Figure 8(a) are attributed to the coarse mesh used in Said and
Krane (1990).

The effects of multiple obstructions in vertical channels are studied at
Ra¼102, 103, 104, 105 and 106 (case C). Different distributions for the
obstructions are considered in this work (see Figure 1 and Table I). The obtained
local Nu distributions along vertical walls are plotted in Figures 9, 10, 11 and
12 corresponding to Geometry I, II, III and IV, respectively. For these four
situations, the local Nu increases for larger Ra at the upstream region of the
obstructions. In general, the presence of obstructions inhibits the heat transfer
along the walls due to the stagnant fluid developed near the intersection of

Figure 8.
Natural convection in
vertical channels.
Channel with a circular
obstruction at the middle
of its height with an
Ar of 0.2727 for
Ra ¼ 2 £ 104: profiles at
different sections of (a)
vertical velocity
component and (b)
temperature
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the obstacle with the wall. However, at high Ra the heat transfer is enhanced in
the downstream zone of the obstructions due to the vortex formation developed
behind them while the increment of the vertical velocity near the tip of the
obstruction leads to an increase in the local Nu coefficient. Figures 13 and 14
show the average Nu plotted against the Ra for Ar¼0.2 and 0.3, respectively.

Figure 9.
Natural convection in

vertical channels. Local
Nu distribution in the

Geometry I (Ar ¼ 0.2) of
a channel with multiple

obstructions

Figure 10.
Natural convection in

vertical channels. Local
Nu distribution in the

Geometry II (Ar ¼ 0.2) of
a channel with multiple

obstructions
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When the obstructions are located in the middle of the channel height, the
average Nu is lower than that obtained for the non-centred positions. This effect
is more evident for the case with Ar ¼ 0:2 due to the influence of the
obstructions given by their large w/a ratio, i.e. the heat transfer conditions are

Figure 11.
Natural convection in
vertical channels. Local
Nu distribution in the
Geometry III (Ar ¼ 0.3)
of a channel with
multiple obstructions

Figure 12.
Natural convection in
vertical channels. Local
Nu distribution in the
Geometry IV (Ar ¼ 0.3)
of a channel with
multiple obstructions
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improved at greater Ar where the effects of the obstruction distributions
decrease. Although the heat transfer area is lower in the unobstructed channel
when compared to that for the obstructed duct, higher average Nu are obtained
for the first case owing to the larger associated mass flow rates. The isotherms
(plotted 0.1 apart), streamlines and pressure contours for different Ra are shown
in Figures 15, 16, 17 and 18 for Geometries I, II, III and IV, respectively. In these

Figure 13.
Natural convection in

vertical channels.
Average Nu with

Ar ¼ 0.2 for different Ra
in Geometries I and II

Figure 14.
Natural convection in

vertical channels.
Average Nu with

Ar ¼ 0.3 for different Ra
in Geometries III and IV
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cases, practically all the heat transfer takes place near the entrance region for
low Ra values. As the Ra increases, the heat transfer occurs throughout the
channel length and the thermal fields show higher temperature gradients near
the walls while the streamlines patterns denote increasing flow re-circulations
in the upper zones of the obstructed sections. The pressure contours present

Figure 15.
Natural convection in
vertical channels.
Geometry I of a channel
with multiple
obstructions for different
Ra: isotherms ( plotted
0.1 apart), streamlines
and pressure contours
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minimum values at the tip of the wall obstructions in agreement with the
maximum values of the velocity vectors in the vicinity of such region. These
patterns reproduce the effect of transversal area reduction on the flow at
obstructed levels. It is important to remark that the numerical results obtained

Figure 16.
Natural convection in

vertical channels.
Geometry II of a channel

with multiple
obstructions for different
Ra: isotherms (plotted 0.1

apart), streamlines and
pressure contours
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in the present analysis are in good agreement with those reported in
Viswatmula and Amin (1995) for Ra ¼ 102 to 104.

It is worth mentioning that the numerical responses provided by the finite
element formulation described in Section 2 do not exhibit a strong mesh

Figure 17.
Natural convection in
vertical channels.
Geometry III of a channel
with multiple
obstructions for different
Ra: isotherms (plotted 0.1
apart), streamlines and
pressure contours
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dependency. In particular, in case C, small oscillations in the pressure field are
only observed in the vicinity of the obstructions for significant reductions (e.g.
50 per cent) in the number of elements in the channel width. Additionally, some
numerical features of the simulations for case C (Geometry I) at different Ra

Figure 18.
Natural convection in

vertical channels.
Geometry IV of a channel

with multiple
obstructions for different
Ra: isotherms (plotted 0.1

apart), streamlines and
pressure contours
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are shown in Table III. Similar convergence trends have been also observed
for Geometries II-IV. The computational effort required for Ra ¼ 106 is
presumably attributed to the large vortexes developed behind the obstructions.
Figure 19 depicts a typical evolution of the residual norm during the iterative
process where a reasonable convergence rate is achieved by the staggered
schemed used to solve the thermally-coupled flow formulation.

3.2 Mixed convective flow around a heated squared obstruction in a horizontal
channel
Non-isothermal flows past a rectangular cylinder have been extensively
analysed in order to evaluate the buoyancy effects on the physical behaviour of
internal mixed convection (Chang et al., 1988; Leung et al., 2000; Ramaswamy
and Jue, 1992; Shuja et al., 2000). This problem is also studied here to assess the
numerical response of the proposed methodology in these kind of flows by
performing a comparison with the results reported in Ramaswamy and Jue
(1992). The geometry and boundary conditions are sketched in Figure 20
considering a vertical downward gravity action. Traction-free conditions are
assumed at the outflow section. The thermal buoyancy is normal to the forced
flow direction and, under specific conditions, may distort the main stream in

Ra

102 103 104 105 106

Steady-state
18 iterations

Steady state
37 iterations

Steady-state
40 iterations

Steady-state
46 iterations

Transient 480 steps
6 iterations/step

Table III.
Natural convection
in vertical channels.
Numerical features
of the simulations
for case C
(Geometry I) at
different Ra

Figure 19.
Natural convection in
vertical channels.
Evolution of the residual
norm (in per cent) for
Geometry I
with Ra ¼ 104
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the wake of the bluff body. An important consideration in this analysis is
related to the limits of the flow conditions for which neither the forced nor the
natural convection mechanisms are usually dominant and both need to be
taken into account in conjunction. Therefore, the air flow and heat transfer
characteristics at different Gr are studied in this problem for Re¼ 100 and 500
with Pr ¼ 0:71:

The computational domain consists of approximately 7,500 four-noded
standard isoparametric regular elements (7,750 nodes) with 40 elements
distributed in the channel height.

Local Nu distributions along the lower and upper walls are presented
in Figure 21 for Re ¼ 100: As can be seen, these profiles are locally affected by
the rectangular cylinder. From the channel inlet, the distribution of the Nu is
continuously decreased before confronting the obstacle, according to the trend
of a thermally developing channel flow. Before the flow reaches the obstruction,
Nu starts increasing and attains a maximum value almost at the end of the
cylinder, where it again decays towards its asymptotic value of a fully
developed channel flow. The lower and upper curves coincide for Gr ¼ 0: For
increasing Gr, they show a gradual asymmetric behaviour owing to the
stronger influence of the natural convection, i.e. Nu increases on the lower wall
and decreases on the upper one. An overall good agreement with the results
obtained in Ramaswamy and Jue (1992) can be observed. Nevertheless, some
discrepancies appear in regions close to the obstacle which can be explained by
the different physically consistent expressions used in the present analysis to
compute the bulk temperature along the channel (see Nomenclature section).

Figure 22 shows friction coefficient distributions along the lower and upper
walls for Re ¼ 100: Once more, symmetric profiles are obtained for Gr ¼ 0:
The friction coefficients along the lower wall grow with increasing Gr while the
reverse trend is observed along the upper wall. These effects are due to the
increment of the mass flow rate in the channel section below the rectangular
cylinder when the natural convection becomes relevant. Furthermore, the
friction coefficient along the upper wall reaches negative values when a re-
circulating flow appears in the upstream upper channel zone for Gr . 8 £ 104

Figure 20.
Mixed convective flow

around a heated squared
obstruction in a

horizontal channel.
Geometry and boundary

conditions
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Figure 21.
Mixed convective flow
around a heated squared
obstruction in a
horizontal channel. Local
Nu for Re ¼ 100 at
different Gr

HFF
13,1

78



Figure 22.
Mixed convective flow

around a heated squared
obstruction in a

horizontal channel.
Friction coefficients for

Re ¼ 100 at different Gr
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approximately. This vortex formation occurs from the inlet region and becomes
small near the cylinder because of the transversal area constriction. Then, the
flow re-attaches in the downstream zone. The present predictions satisfactorily
adjust the available results reported in Ramaswamy and Jue (1992) for Gr
ranging from 0 to 16 £ 104:

The isotherms (plotted 0.1 apart), streamlines and pressure contours are
presented in Figure 23 for Re ¼ 100 at different Gr. The temperature
distributions are strongly affected by the buoyancy effects, making evident the
local Nu behaviour shown in Figure 21, as the temperature gradient decreases
near the upper wall and increases close to the lower wall for higher Gr.
The influence of the buoyancy forces on the flow pattern is also reflected in the
streamline contours which show increasing mass flow rates below
the obstruction for larger Gr. As commented above, this effect is apparent in
the friction coefficient distributions described in Figure 22. The pressure
contours lose the symmetry obtained for the purely forced convection case
ðGr ¼ 0Þ when Gr increases. All these temperature and flow patterns are
qualitatively in agreement with those obtained in Ramaswamy and Jue (1992).

The influence of natural convection is additionally assessed for Re¼500.
The corresponding local Nu and friction coefficient distributions along both
channel walls are, respectively, shown in Figures 24 and 25. The symmetry
found in such curves demonstrates that the buoyancy effects do not play an
important role in the flow and heat patterns even for the largest Gr considered.

The drag and lift coefficients for different Gr and Re are summarized in
Table IV. As expected, no lift forces are found for Gr ¼ 0: As Gr increases, for
Re ¼ 100; the lift coefficient grows accordingly due to the relevancy of the
buoyancy forces. This trend is not found for Re ¼ 500 where Cl is almost
negligible denoting the major influence of the forced convection in this case
which also justifies the practically invariant behaviour of Cd. The drag
coefficient for Re ¼ 100 shows an increasing response for higher Gr.
Nevertheless, for Gr ¼ 32 £ 104; Cd diminishes owing to pressure
homogenisation around the obstruction.

All the results presented for this problem are stable steady-state solutions,
i.e. no regular periodic shedding has been observed for the range of Gr and Re
studied. This can be explained by the proximity of the channel walls with
respect to the obstruction height.

4. Conclusions
The numerical simulation of two-dimensional steady-state natural and mixed
convection in obstructed channels has been presented by using a finite element
thermally coupled incompressible flow formulation obtained via a generalized
streamline operator technique.

Natural convection has been studied in several vertical channel
configurations for a wide range of Ra. The presence of obstructions in the
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Figure 23.
Mixed convective flow

around a heated squared
obstruction in a

horizontal channel.
Isotherms (TA ¼ 0:5,

plotted DT ¼ 0:1 apart),
streamlines (wA ¼ 0:9,

wB ¼ 0:1, plotted
Dw ¼ 0:1 apart) and

pressure contours
(30 lines plotted with the

minimum value being
situated at the left

bottom corner of the
obstruction) for Re¼100

at different Gr

Modelling
convection in

channels

81



channel causes better local heat transfer rates due to increments in both the
vertical flow and surface area on the obstructed wall. However, the average Nu
decreases when compared to that for the unobstructed channel owing to the
reduction of mass flow rate and the existence of stagnant regions caused by the
obstructions.

Mixed convection has been analysed in a horizontal channel with a built-in
rectangular cylinder for different Re and Gr. The proposed methodology has
been validated in the analysis of mixed convection problems involving low and
high Gr/Re2 relations which, respectively, denote the relevance of either natural
or forced convection.

Figure 24.
Mixed convective flow
around a heated squared
obstruction in a
horizontal channel. Local
Nu for Re ¼ 500 at
different Gr

Figure 25.
Mixed convective flow
around a heated squared
obstruction in a
horizontal channel.
Friction coefficients for
Re ¼ 500 at different Gr

Re Gr Cd Cl

0 1.2303 0
4£104 1.2451 0.5415

100 8£104 1.2916 1.0074
16£104 1.4278 2.0508
32£104 1.0392 2.7593

0 0.9789 0
500 8£104 0.9793 0.0205

32£104 0.9836 0.0803

Table IV.
Mixed convective
flow around a
heated squared
obstruction in a
horizontal channel.
Drag and lift
coefficients for
different Re and Gr
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The results obtained in this work for both problems have been successfully
validated with available experiments and other existing numerical solutions.
The performance of the methodology applied in the simulations has been also
illustrated in terms of grid independency, computational effort and
convergence rates. Nevertheless, the transient behaviour at Ra higher than
those considered in this work as well as the study of the influence of the
channel height on the thermal and flow patterns need to be explored in further
research.
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